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Summary

• On linearly separable dataset, logistic regression with
Gradient Descent

• Predictor converges to the direction of the max-margin
(hard margin SVM) solution.
• Normalized vector are convergence in the rate of O (1/ log(t))
• It is slower than convergence rate of loss (= O(1/t))

• Can be extended to multi-class problems, and deep network
(in a certain restricted setting).
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Setting

Dataset

• {xn, yn}Nn=1, with xn ∈ Rd and binary labels yn ∈ {−1, 1}
• Re-define ynxn as xn
• Dataset is linearly separable : ∃w∗ s.t ∀n : w>∗ xn > 0

Model

• We analyze learning by minimizing an empirical loss of the
form

L(w) =
N∑

n=1

`
(
w>xn

)
• `(·) is positive, differentiable, monotonically decreasing to zero,
β-smooth function, and −`′(·) has a tight exponential tail.

• Examples of `(·) : Exponential loss, Logistic loss
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Main Theorems

Theorem 3
For almost all datasets (i.e., except for a measure zero),
any stepsize 0 < η < 2β−1σ−2

max(X), any starting point w(0),
the gradient descent iterates will be have as :

w(t) = ŵ log t + ρ(t)

where ŵ is the the solution to the hard margin SVM :

ŵ = argmin
w∈Rd

‖w‖2 s.t. w>xn ≥ 1

and ρ(t) is bounded, so

lim
t→∞

w(t)

‖w(t)‖
=

ŵ
‖ŵ‖
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Main Theorems

Theorem 5
With same conditions on previous theorem, predictor converges to
the direction of the hard margin SVM solution in terms of∥∥∥∥ w(t)

‖w(t)‖
− ŵ
‖ŵ‖

∥∥∥∥ = O

(
1

log t

)
and in angle

1− w(t)>ŵ
‖w(t)‖‖ŵ‖

= O

(
1

log2 t

)
.

Margin converges as

1
‖ŵ‖

− minn x>n w(t)

‖w(t)‖
= O

(
1

log t

)
.

On the other hand, the loss itself decrease as

L(w(t)) = O

(
1
t

)
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Main Theorems

Corollary 6
Let ` be the logistic loss, and V be an independent validation set,
for which ∃x ∈ V such that x>ŵ < 0.
Then the validation loss increases as

Lval (w(t)) =
∑
x∈V

`
(
w(t)>x

)
= Ω(log(t))
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Main Theorems

Example : CNN, CIFAR10

• The traing loss decays as a t−1.

• L2 norm of last weight layer increases logarithmically.

• After a while, the validation loss starts to increase.

• In contrast, the validation error slowly improves.
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Extensions : Multi Class

Theorem 7
For almost all multiclass datasets which are linearly separable,
any starting point w(0) and any small enough stepsize,
the iterates of gradient descent will behave as

w(t) = ŵ log t + ρ(t)

where ŵk is the the solution of the K-class SVM :

argminw1,...,wk

K∑
k=1

‖wk‖2 s.t. ∀n,∀k 6= yn : w>ynxn ≥ w>k xn + 1

and ρ(t) is bounded.
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Extensions : Deep networks

Corollary 8
We examine a multilayer neural network with component-wise ReLU
functions f (z) = max(z , 0), and weights {Wl}Ll=1. Given input xn
and target yn ∈ {−1, 1}, the DNN produces a scalar output

un = WLf (WL−1f (· · ·W2f (W1xn)))

If we optimize a single weight layer wl = vec
(
W>l

)
using gradient

descent, so that L(wl) =
∑N

n=1 ` (ynun (wl)) converges to zero,
and ∃t0 s.t. ∀t > t0 the ReLU inputs do not switch signs, then
wl (t)
||wl (t)|| converges to

ŵl = argmin
wl

‖wl‖2 s.t. ynun (wl) ≥ 1
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