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® On linearly separable dataset, logistic regression with
Gradient Descent

® Predictor converges to the direction of the max-margin
(hard margin SVM) solution.

® Normalized vector are convergence in the rate of O (1/log(t))
® |t is slower than convergence rate of loss (= O(1/t))

® Can be extended to multi-class problems, and deep network
(in a certain restricted setting).
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Dataset
. {x,,,y,,},’y:l, with x, € R? and binary labels y, € {—1,1}
® Re-define y,x, as x,
e Dataset is linearly separable : Iw, s.t Vn: w, x, >0

Model

® \We analyze learning by minimizing an empirical loss of the
form

L(w) = ZNIE (WTX,,)
n=1

® /(-) is positive, differentiable, monotonically decreasing to zero,
[B-smooth function, and —¢(+) has a tight exponential tail.

® Examples of /(-) : Exponential loss, Logistic loss
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Theorem 3
For almost all datasets (i.e., except for a measure zero),
any stepsize 0 < 1 < 28702, (X), any starting point w/(0),

the gradient descent iterates will be have as :
w(t) = wlogt + p(t)
where w is the the solution to the hard margin SVM :

w = argmin|lw|?®st. w'x, >1
weRd

and p(t) is bounded, so

. w(t) w
[im = —
oo [[w(t)]| Wl




Theorem 5
With same conditions on previous theorem, predictor converges to
the direction of the hard margin SVM solution in terms of

' (B~ 781 H =0 (jog2)

T A

o w® w (12> ‘

[[w ()|l log= t

Margin converges as

1 min, x,] w(t) < 1 >

— — =0 —|.

[ [w(t)] log t
On the other hand, the loss itself decrease as
1

L(w(t))=0 ()

t

and in angle




Corollary 6

Let ¢ be the logistic loss, and V be an independent validation set,
for which 3x € V such that x"w < 0.

Then the validation loss increases as

Lot (w(t) = > £ (w(t)"x) = Q(log(t))

xeVy



Main Theorems

Example : CNN, CIFAR10

Objective loss Classification error L2 norm of final layer
80

10%0 »
60
10 20
z S R
S 102 8 i
g 3
» 1
10
10%4 L)
100 To o2 o 100 o o2 p 100 o T o
Epochs Epochs Epochs

® The traing loss decays as a t~ 1.
® [, norm of last weight layer increases logarithmically.
o After a while, the validation loss starts to increase.

® |n contrast, the validation error slowly improves.
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Extensions : Multi Class

Theorem 7

For almost all multiclass datasets which are linearly separable,
any starting point w(0) and any small enough stepsize,

the iterates of gradient descent will behave as

w(t) = wlogt + p(t)

where wy is the the solution of the K-class SVM :

K
argming, ., Z |wi||? s.t. Vn,Vk # y, - w;;x,, > wy x, +1
k=1

and p(t) is bounded.
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Extensions : Deep networks

Corollary 8

We examine a multilayer neural network with component-wise ReLU
functions f(z) = max(z,0), and weights {W/},Lzl. Given input xp
and target y, € {—1,1}, the DNN produces a scalar output

up =W f (W af (- Waf (Wixy)))

If we optimize a single weight layer w; = vec (W,T) using gradient

descent, so that £(w;) = ZQI:1 £ (ynun (wy)) converges to zero,

and Jty s.t. Vt > tg the ReLU inputs do not switch signs, then
W/(t)

converges to
Twi (o)1) g

w; = argmin |[|w|)? s.t. ypu, (w) > 1
17
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