The Implicit Bias of Gradient Descent on Separable Data

Soudry, D. et al. (2018 JMLR), cited by 339

InSung Kong 2021 5/13

Seoul National University

- On linearly separable dataset, logistic regression with Gradient Descent
- **Predictor** converges to the direction of the **max-margin** (hard margin SVM) solution.
 - Normalized vector are convergence in the rate of $O\left(1/\log(t)\right)$
 - It is **slower** than convergence rate of **loss** (= O(1/t))
- Can be extended to multi-class problems, and deep network (in a certain restricted setting).

Setting

Dataset

- $\{\mathbf{x}_n, y_n\}_{n=1}^N$, with $\mathbf{x}_n \in \mathbb{R}^d$ and binary labels $y_n \in \{-1, 1\}$
- Re-define $y_n x_n$ as x_n
- Dataset is linearly separable : $\exists w_* \text{ s.t } \forall n : w_*^\top x_n > 0$

Model

• We analyze learning by minimizing an empirical loss of the form

$$\mathcal{L}(\boldsymbol{w}) = \sum_{n=1}^{N} \ell\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}\right)$$

- $\ell(\cdot)$ is positive, differentiable, monotonically decreasing to zero, β -smooth function, and $-\ell'(\cdot)$ has a tight exponential tail.
- Examples of $\ell(\cdot)$: Exponential loss, Logistic loss

Theorem 3

For almost all datasets (i.e., except for a measure zero), any stepsize $0 < \eta < 2\beta^{-1}\sigma_{\max}^{-2}(X)$, any starting point $\boldsymbol{w}(0)$, the gradient descent iterates will be have as :

$$oldsymbol{w}(t) = \hat{oldsymbol{w}} \log t +
ho(t)$$

where $\hat{\boldsymbol{w}}$ is the the solution to the hard margin SVM :

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmin}} \| \boldsymbol{w} \|^2 \text{ s.t. } \boldsymbol{w}^\top \boldsymbol{x}_n \geq 1$$

and ho(t) is bounded, so

$$\lim_{t\to\infty}\frac{\boldsymbol{w}(t)}{\|\boldsymbol{w}(t)\|}=\frac{\hat{\boldsymbol{w}}}{\|\hat{\boldsymbol{w}}\|}$$

Theorem 5

With same conditions on previous theorem, predictor converges to the direction of the hard margin SVM solution in terms of

$$\left\|\frac{\boldsymbol{w}(t)}{\|\boldsymbol{w}(t)\|} - \frac{\hat{\boldsymbol{w}}}{\|\hat{\boldsymbol{w}}\|}\right\| = O\left(\frac{1}{\log t}\right)$$

and in angle

$$1 - \frac{\boldsymbol{w}(t)^{\top} \hat{\boldsymbol{w}}}{\|\boldsymbol{w}(t)\| \| \hat{\boldsymbol{w}}\|} = O\left(\frac{1}{\log^2 t}\right).$$

Margin converges as

$$\frac{1}{\|\hat{\boldsymbol{w}}\|} - \frac{\min_n \boldsymbol{x}_n^\top \boldsymbol{w}(t)}{\|\boldsymbol{w}(t)\|} = O\left(\frac{1}{\log t}\right).$$

On the other hand, the loss itself decrease as

$$\mathcal{L}(\boldsymbol{w}(t)) = O\left(rac{1}{t}
ight)$$

Corollary 6

Let ℓ be the logistic loss, and \mathcal{V} be an independent validation set, for which $\exists x \in \mathcal{V}$ such that $\mathbf{x}^{\top} \hat{\mathbf{w}} < 0$.

Then the validation loss increases as

$$\mathcal{L}_{\mathsf{val}}\left(oldsymbol{w}(t)
ight) = \sum_{oldsymbol{x} \in \mathcal{V}} \ell\left(oldsymbol{w}(t)^{ op} oldsymbol{x}
ight) = \Omega(\log(t))$$

Main Theorems

Example : CNN, CIFAR10

- The traing loss decays as a t^{-1} .
- L₂ norm of last weight layer increases logarithmically.
- After a while, the validation loss starts to increase.
- In contrast, the validation error slowly improves.

Theorem 7

For almost all multiclass datasets which are linearly separable, any starting point w(0) and any small enough stepsize, the iterates of gradient descent will behave as

 $\boldsymbol{w}(t) = \hat{\boldsymbol{w}} \log t +
ho(t)$

where $\hat{\boldsymbol{w}}_k$ is the the solution of the K-class SVM :

$$\operatorname{argmin}_{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k} \sum_{k=1}^K \|\boldsymbol{w}_k\|^2 \text{ s.t. } \forall n, \forall k \neq y_n : \boldsymbol{w}_{y_n}^\top \boldsymbol{x}_n \geq \boldsymbol{w}_k^\top \boldsymbol{x}_n + 1$$

and $\rho(t)$ is bounded.

Corollary 8

We examine a multilayer neural network with component-wise ReLU functions f(z) = max(z, 0), and weights $\{W_I\}_{I=1}^L$. Given input x_n and target $y_n \in \{-1, 1\}$, the DNN produces a scalar output

$$u_n = \mathsf{W}_L f\left(\mathsf{W}_{L-1} f\left(\cdots \mathsf{W}_2 f\left(\mathsf{W}_1 \boldsymbol{x}_n\right)\right)\right)$$

If we optimize a single weight layer $\mathbf{w}_l = \operatorname{vec} (W_l^{\top})$ using gradient descent, so that $\mathcal{L}(\mathbf{w}_l) = \sum_{n=1}^N \ell(y_n u_n(\mathbf{w}_l))$ converges to zero, and $\exists t_0 \text{ s.t. } \forall t > t_0$ the ReLU inputs do not switch signs, then $\frac{\mathbf{w}_l(t)}{||\mathbf{w}_l(t)||}$ converges to

$$\hat{oldsymbol{w}}_l = \mathop{\mathrm{argmin}}_{oldsymbol{w}_l} \|oldsymbol{w}_l\|^2 \;\; ext{s.t.} \; y_n u_n\left(oldsymbol{w}_l
ight) \geq 1$$